adaptive_histogram_equalization#

VirtualBSEImage.adaptive_histogram_equalization(kernel_size: tuple[int, int] | list[int] | None = None, clip_limit: int | float = 0.0, nbins: int = 128, show_progressbar: bool | None = None, inplace: bool = True, lazy_output: bool | None = None) VirtualBSEImage | LazyVirtualBSEImage | None[source]#

Enhance the local contrast using adaptive histogram equalization.

This method uses skimage.exposure.equalize_adapthist().

Parameters:
kernel_size

Shape of contextual regions for adaptive histogram equalization, default is 1/4 of image height and 1/4 of image width.

clip_limit

Clipping limit, normalized between 0 and 1 (higher values give more contrast). Default is 0.

nbins

Number of gray bins for histogram (“data range”), default is 128.

show_progressbar

Whether to show a progressbar. If not given, the value of hyperspy.api.preferences.General.show_progressbar is used.

inplace

Whether to operate on the current signal or return a new one. Default is True.

lazy_output

Whether the returned signal is lazy. If not given this follows from the current signal. Can only be True if inplace=False.

Returns:
s_out

Equalized signal, returned if inplace=False. Whether it is lazy is determined from lazy_output.

Notes

It is recommended to perform adaptive histogram equalization only after static and dynamic background corrections of EBSD patterns, otherwise some unwanted darkening towards the edges might occur.

The default window size might not fit all pattern sizes, so it may be necessary to search for the optimal window size.

Examples

Load one pattern from the small nickel dataset, remove the background and perform adaptive histogram equalization. A copy without equalization is kept for comparison.

>>> import kikuchipy as kp
>>> s = kp.data.nickel_ebsd_small().inav[0, 0]
>>> s.remove_static_background()
>>> s.remove_dynamic_background()
>>> s2 = s.deepcopy()
>>> s2.adaptive_histogram_equalization()

Compute the intensity histograms and plot the patterns and histograms

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> hist, _ = np.histogram(s.data, range=(0, 255))
>>> hist2, _ = np.histogram(s2.data, range=(0, 255))
>>> _, ((ax0, ax1), (ax2, ax3)) = plt.subplots(nrows=2, ncols=2)
>>> _ = ax0.imshow(s.data)
>>> _ = ax1.imshow(s2.data)
>>> _ = ax2.plot(hist)
>>> _ = ax3.plot(hist2)
../../_images/kikuchipy-signals-VirtualBSEImage-adaptive_histogram_equalization-1.png