Skip to main content
Ctrl+K
kikuchipy

Site Navigation

  • User guide
  • API reference
  • Contributing
  • Changelog

Site Navigation

  • User guide
  • API reference
  • Contributing
  • Changelog

Section Navigation

Getting started

  • Installation

Usage

  • Tutorials
    • Load and save data
    • Visualizing patterns
    • Pattern processing
    • Reference frames
    • Feature maps
    • Virtual backscatter electron imaging
    • Hough indexing
    • Pattern matching
    • Hybrid indexing
    • Orientation dependence of the projection center
    • Fit a plane to selected projection centers
    • Extrapolate projection centers from a mean
    • PC calibration: “moving-screen” technique
    • Geometrical EBSD simulations
    • Kinematical EBSD simulations
    • Multivariate analysis
    • M&M 2021 Sunday Short Course
    • ESTEEM3 workshop
  • Examples
    • Pattern processing
      • Pattern binning
      • Static background correction
      • Dynamic background correction
      • Neighbour pattern averaging
      • Adaptive histogram equalization
    • Reference frames
      • Fit a plane to selected projection centers
      • Estimate tilt about the detector x axis
      • Estimate tilts about the detector x and z axis
    • Selecting data
      • Crop navigation axes
      • Crop signal axes
      • Extract patterns from a grid
    • Visualization
      • Plot nice master pattern image

Resources

  • Bibliography
  • Applications
  • Open datasets
  • Related projects
  • License
  • User guide
  • Examples
  • Selecting data

Selecting data#

These examples cover selection of data via extraction a subset of the navigation and/or signal axes.

Crop navigation axes

Crop navigation axes

Crop signal axes

Crop signal axes

Extract patterns from a grid

Extract patterns from a grid

previous

Estimate tilts about the detector x and z axis

next

Crop navigation axes

Edit on GitHub
Show Source

© Copyright 2019-2023, kikuchipy developers.

Created using Sphinx 5.3.0.

Built with the PyData Sphinx Theme 0.13.1.